The Trajectories for the Effective Learning and Teaching of Mathematics in the Primary Grades (k-2)

"Children follow natural developmental progressions in learning and development. As a simple example, children first learn to crawl, which is followed by walking, running, skipping, and jumping with increased speed and dexterity. Similarly, they follow natural developmental progressions in learning math; they learn mathematical ideas and skills in their own way. When educators understand these developmental progressions, and sequence activities based on them, they can build mathematically enriched learning environments that are developmentally appropriate and effective. These developmental paths are a main component of a learning trajectory."

(Clements & Sarama, 2009)

"The fundamental core of effective teaching of mathematics combines an understanding of how children learn and promote that language through problem solving, and how to plan for and assess that learning on a daily basis"

(Van de Walle & Lovin, 2006)

Number Sense Trajectory –Putting It All Together

	Subitizing	Comparison	Counting	One-to-One	<u>Cardinality</u>	Hierarchical Inclusion	<u>Number</u>
Trajectory	Being able to	Being able to	Rote procedure of	Correspondence	Tells how many things	Numbers are nested inside of	Conservation
	visually	compare	counting. The	Students can	are in a set. When	each other and that the	The number of
	recognize a	quantities by	meaning attached	connect one	counting a set of	number grows by one each	objects remains the
	quantity of 5	identifying	to counting is	number with one	objects, the last word	count. 9 is inside 10 or 10 is	same when they are
	or less.	which has more	developed through	object and then	in the counting	the same as $9 + 1$.	rearranged spatially.
		and which has	one-to-one	count them with	sequence names the		5 is 4&1 OR 3&2.
		less.	correspondence.	understanding.	quantity for that set.		

Each concept builds on the previous idea and students should explore and construct concepts in such a sequence

	Spatial Relationship	One and Two-More or Less	Understanding Anchors	Part-Part-Whole
Number Relationships	Patterned Set Recognition	Students need to understand the relationship of number as it	Students need to see the	<u>Relationship</u>
	Students can learn to recognize	relates to +/- one or two. Here students should begin to see that	relationship between	Students begin to
	4C-1-141	5 is 1 more than 4 and that it is also 2 less than 7.	numbers and how they relate	conceptualize a
	4 14 11 1		to 5s and 10s. 3 is 2 away	number as being
	without counting.		from 5 and 7 away from 10.	made up from two
				or more parts.

Developing Number Sense: The Big Picture

This trajectory is designed to show number sense development through the early years of elementary school. Although the graphic organizer flows horizontally left to right, it also aligns vertically. Each concept builds from the previous stage and is the foundation to developing the number sense required of all students.

Addition and Subtraction Strategies

One/Two More/Less	Make a Ten	Near Doubles
These facts are a direct	Use a quantity from one	Using the
application of the One/Two	addend to give to another to	doubles anchor
More/ Less than relationships	make a ten then add the	and combining it
	remainder.9 + $7 = 10 + 6$	with 1 and 2
		more/less.
Facts with Zero	Doubles	
Need to be introduced so that	Many times students will use	
students don't overgeneralize	doubles as an anchor when	
that answers to addition are	adding and subtracting.	
always bigger.		

Clements, D. H., & Sarama, J. (2009). *Learning and teaching early math: The learning trajectories approach*. London: Routledge. Van de Walle, J., A., & Lovin, L., H. (2006). *Teaching student-centered mathematics grades k-3*. Boston: Person Education.