Measurement: Part 2

Building the Measurement

 Instructional Continuum at Brock
ExTra! Extra!
 Chocolate Bar Company

 Criticized!Chocolate Bar has been a favourite for years, but since the public is becoming increasingly concerned about the impact that food packaging has on the environment, sales have plummeted! This is very distressing news for the company. The president af
company has called a crisis management meeting of her strategy team. The Chocolongo Company vows to reduce packaging on its chocolate bar, while still providing the same great amount of chocolate.品品

You are a member of the crisis management team and you must come up with a new format for the Chocolongo Bar.
You have 36 cubes, which represent the volume of the Chocolongo Bar.

Your task is to work with the 36 cubes to find all other possible formats for the new and improved bar.
You must provide proof that the selected format will result in the least amount of packaging.

For shipping and storage purposes, the final product must be in the form of a rectangular prism.

Good luck...the future of the Chocolongo Bar Company is in your hands!

The Work: Ambitious and Necessary

GREATER ESSEX COUNTY DISTRICT SCHOOL BOARD
A Vision for Mathematics

Enact the Vision

"The GECDSB provides mathematics education that engages and empowers students through collaboration, communication, inquiry, critical thinking and problem-solving, to support each student's learning and nurture a positive attitude towards mathematics."

2016-17 GECDSB Maith Strategy Ta

- Mathematical Proficiency
- Meaningful Manipulative Use
- Math Learning Continuums
- Curriculum Connections
- Pedagogical System
- Concreteness Fading
- Substance vs Structure
- Spatial Reasoning
- Assessment for Learning

2017-18 GECDSB Math Strategy

CONCEPTUAL UNDERSTANDING

Ability to understand mathematical concepts, operations, and relationships

Understanding and using a variety of

PROCEDURAL FLUENCY

mathematical procedures

RES

ADAPTIVE REASONING

Capacity for logical thought, reflection, explanation, and justification

Ability to formulate, represent \& solve mathematical problems using an effective strategy

STRATEGIC
 COMPETENCE

PRODUCTIVE
 DISPOSITION

Inclination to see mathematics as useful and valuable.

How can you measure a bucket?

Consider:

- attributes
- possible units

Measurement = assigning a numerical value to an attribute of an object

Our Plans for Today...

Process of Measurement
Look at Direct and Indirect Measurement: THE UNIT
What is a unit?
Understanding the Unit
Isaac's work- Big Ideas \& Misconceptions

Task Breakout- Measuring the Leaf
Units are qunatities not shapes...
Moving to Standard units

Process of Measu

1. Decide attribute to be measured
2. Select a unit that has the same attribute
3. Compare the units - by filling, covering, matching or using known measures. Recognize the number of units needed $=$ the measurement

Implications for Measurement Instruction

1. Students must understand the attribute to be measured = direct comparisons
2. Students must understand how filling, covering, matching etc. produces a number called a measure = use physical models (non-standard units)
3.Students use common measuring tools with understanding and flexibility = make measuring tools, then connect to standard tools

Continuum of Measurement Understanding

Impacts measurement instruction...we need to sequence experiences

1) Direct COMPARISONS: Consider the two shapes at your table: Using only the shapes themselves, which shape is bigger?
2)Indirect comparisons: Now consider the same two shapes: Using only the shapes themselves and the colour tiles provided, be more precise. Which shape is bigger?
2) Direct Measurements No onsidr e an e two shapes: Using only the shapes themselves and 4) Indirect Measureme themselves, known mea is meats, be even more precise. What is the area of each shape?

What is a unit?

- As soon as we move from comparing to measuring, as soon as we start quantifying a comparison, we need to use a unit. The whole idea of "units" is huge in mathematics, one of those big overarching themes that crosses a bunch of strands.
-We talk about unit fractions (one-fifth, one-tenth, one-eighth); we see it in place value when we look to the ones column -- the unit -- and realize that everything, both whole numbers and decimals, are centered around that unit.
- We see it in proportional reasoning, when we find the unit rate to compare ratios.
-We see it at the heart of measurement. Linear units, like a centimeter or inch; units of area, like square centimetres or square kilometers; units of volume like a cup or a litre; units of time, like minutes or hours.

Understanding the Unit:

What would you say Isaac knows about area?

Measure the area of this leaf:

Show or explain how you did it.

fol

Big Idea \#3 Units are quantities not shapes

BIG IDEA 1
 Constant Units
 No Gaps or Overlaps

Units are quantities not shapes

A lot of times because kids are only confronted with squares when they're working with area, and because they're called square units, we think that a square unit is a square. But really it is a quantity -- an amount of space that can be re-assembled any way we wish. If Isaac had realized that these shapes could be cut and reshaped - as long as he conserved the area of that unit - he would have been fine. But he realize didn't that units are like liquid - they're fluid - they can morph into any shape as long as the quantity doesn't change.

It's obvious when we're talking about capacity. A litre can come in all sorts of different shapes. Right? But with area -- I think it's because we tend to give kids fixed materials like square tiles or a grid that is made up of squares -- we don't bump up against the idea that a square unit can be all sorts of different shapes.

Quantities not shapes....

What is the area

 of this boat?

2 Hexagons

Five Big Ideas about the Unit and Direct Measurement

1. To measure something is to say how much of a particular attribute it has.

The unit we choose determines our level of accuracy. The smaller the unit, the more accurate our measure can be.

3 A unit is a quantity, not a shape.

We choose an instrument to concretely represent a unit. We can use different instruments to represent that unit so long as the quantity is the same.

And lastly.....

The accuracy of our measurement is determined by:

1. how well our instrument matches the the unit;
2. how consistently we repeat our instrument;
3. how completely we match our instrument to what we're measuring.

Standard Units....History of Measurement:

<iframe width="760" height="423"
src="https://www.youtube.com/embed/NValmBwli1Q"
frameborder="0" gesture="media" allow="encrypted-
media" allowfullscreen></iframe>

Moving to the Standard Unit:

The Relationship between Place Value and the Metric System

	10^{12}	10^{9}	10^{6}	10^{3}	10^{2}	10^{1}	Root unit	10^{-1}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}
Place values	trillions	billions	millions	thousands	hundreds	tens	unit (ones)	tenths	hundreths	thousandths	Millionths	billionths	trillionths
Metric prefix	tera (T)	giga (G)	mega (M)	kilo (k)	hecto (h)	deca (da)		deci (d)	centi (c)	milli (m)	micro (μ)	nano (n)	pico (p)
Length	terametre (Tm)	gigametre (Gm)	megametre (Mm)	kilometre (km)	hectometre (hm)	decametre (dam)	metre (m)	decimetre (dm)	centimetre (cm)	millimetre (mm)	micrometre ($\mu \mathrm{m}$)	nanometre (nm)	picometre (pm)
Capacity	teralitre (TL)	gigalitre (GL)	megalitre (ML)	kilolitre (kL)	hectolitre (hL)	decalitre (daL)	litre (L)	decilitre (dL)	centilitre (cL)	millilitre (mL)	microlitre ($\mu \mathrm{L}$)	nanolitre (nL)	picolitre (pL)
Mass	teragram (Tg)	gigagram (Gg)	megagram (Mg)	kilogram (kg)	hectogram (hg)	decagram (dag)	gram (g)	decigram (dg)	centigram (cg)	milligram (mg)	microgram ($\mu \mathrm{g}$)	nanogram (ng)	picogram (pg)

About One Unit
Give students physical model of a unit and have them search for objects that have the same measure as that 'one unit'. Then extend to bigger than and smaller than...

Guess the Unit
Find examples of of measurements (newspapers, signs etc.). Present the context and measure, but not the units...guess the unit.

Making and Using Rulers

If the Shoe Fits

Connecting Number Lines \& Rulers

Sequence of number line
counting of the unit.

M
Sequence of Number Lines

1. Glue units on card st
2. Add numbers to help
3. Standard rulers: nur

Understanding the Passage of Ti

The passage of time is different than reading a clock.

This understanding develops through:

- personal benchmarks
- comparing events

See the Guides to Effective Instruction...

How Fast Are You?

Your group is going to do some estimating. Person 1 estimates the number of times he or she an do the activity in 1 minute.

Person 2 keeps track of 1 minute.
Person 3 records the number of times Person 1 does

Make sure that everyone in your group has a chance to do all three jobs.

Job	Estimate	Try it out
write your name (on the back of this sheet)		
jumping jacks		
snap your fingers		
blink your eyes		
put on and take off your shoe		

Reading Analogue Clocks

Re-thinking our time "unit"

Two-Piece Shapes

Hit the Target

Activating physical models

Fixed Area/Fixed Perimeter Lessons

Developing Formulas

When students develop formulas, they gain conceptual understanding of the ideas and relationships involved, and they engage in 'doing mathematics'.

$$
\begin{aligned}
\text { Formulas } & =\text { generalizations } \\
\text { Generalizing } & =\text { algebraic reasoning }
\end{aligned}
$$

Exploring measurement relationships = forming conjectures
Proving conjectures = algebraic reasoning

Let's explore rectangular prisms!

Anticipate, Select, Sequence \&

COoncreteemodel - count squares

- Pictorial model - draw isometric drawings, and/or nets
- Find area of different sides, add
- Use strategies like x2, recognizing that opposite faces are the same
- Numerical model - records in table
- Recognizes 3 dimensions multiply to equal 36
- Notices pattern - closer to cube, smaller surface area = generalize

Estimation \& Approximation

"Measurement estimation is the process of using mental and visual information to measure."

$$
\text { Van de Walle, p. } 276
$$

Estimation is about reasoning and reasonableness ...it is very mathematical!

- estimation helps children focus on the attribute being measured
- estimation provides intrinsic motivation for measurement
- estimation develops familiarity with standard units
- estimation lays the foundation for multiplicative thinking

Estimation \& Approxim

- You try:

Oh drat ...we have no formula for an irregular milkshake spill! What shall we do?

Samantha spills a milkshake on a rectangular piece of paper as shown below.

Which of the following best approximates the area of the entire spill?

Activating and Developing Estimation

1. Develop and use personal benchmarks
2. Use chunking or subdivisions
3. Iterate a unit mentally or physically

Estimation tasks are a good way to assess students' understanding of both measurement and units.

Make estimation an ongoing activity.

Problem Sort

Sort the collection of problems:

KNOWLEDGE APPLICATION

Where does communication fit?

Whole School Task - Algebraic Thinking

My neighbor plants his apple trees in a square pattern in each orchard. To protect the trees from the wind, he plants evergreens all around the orchard.

How many of each type of tree will there be in Orchard 6?

Continuum of Thinking: Whole School Task - How many of each tree in orchard \#6?

