Progression of Fractions

March 23: Brock PS

Plans for today:

Fractions: What do you notice or wonder??
Carton Counting
Review of Paying Attention to Fractions
Doritos---- Hot or Not (Fraction Constructs)
Baking Brownies- unfriendly Fractions
Rolos--- How many pieces?

Fraction Models

LET'S DO SOME MATH!!!!!

Attendance:

- Anne Adamson (P)
- Bryan Johnson (VP)
- Stephanie Douglas
- Cecilia Joseph
- Sheri Gaetz
- Kristi Jasey
- Danilela Amato
- Monica Mackenzie
- Mark Patterson
- Alana Parsons
- Kristine Bentley
- Rebecca Davies
- Stephanie Molenda
- Brian Bartlett
> Andrea Manchen
- Pauline Brown
- Jennifer Kathen Groggin
- Matina Lousisa
- Leah Beherns

Giovanna Giglio

What do you...

What do you...

Notice and Wonder?

How many eggs are there?

How many eggs are there?

Carton Counting

Carton Counting

Carton Counting

Carton Counting

How many cartons are there?

Carton Counting

Carton Counting

Carton Counting

Carton Counting

Paying Attention to Fractions

"The research suggests that explicit and precise changes to learning and teaching practices can have a substantial impact on children's understanding of fractions and future mathematical success. Instructional decisions have a significant bearing upon students' ability to understand the concept of fractions, including the ability to represent fractions appropriately, compare the relative magnitude of two fractions, and complete calculations accurately."
(Bruce, Chang, Flynn \& Yearley, 2013, p. 32)

Why Is Understanding Fractions Important?

"No area of elementary school mathematics is as mathematically rich, cognitively complicated, and difficult to teach as fractions, ratios, and proportionality. These ideas all express mathematical relationships: fractions and ratios are 'relational' numbers. They are the first place in which students encounter numerals like ' $3 / 4$ ' that represent relationships between two discrete or continuous quantities, rather than a single discrete ('three apples') or continuous quantity ('4 inches of rope')."

What is a Fraction?

A fraction is a number.
While fractional notation is typically used to represent quantities that are not whole, it is possible for all quantities to be represented as a fraction.

These simple descriptions do not appropriately communicate the complex constructs that lie within this big idea.

Connecting Fractions and Proportional Reasoning

> "The essence of proportional reasoning is the consideration of number in relative terms, rather than absolute terms."

Connecting Fractions and Proportional Reasoning

"The essence of proportional reasoning is the consideration of number in relative terms, rather than absolute terms."

Part-Whole Relationship

How many cartons are there?

IMGEREDENTS: SELECTED CORN, VEGEIABLE OILL SEASONING CORNI
 BUITERMILL. ROMANO CHESE, WHEY PROTEIN CONCEITRAEE ONION OWDER, VEEEABBLE OLL, CORN FLOUR, NATURAL AND ARTICCLLL FAHOOR EEXTROSE, TOMATO POWDER, LACTOSE, SPPICES, COLOUR, LCTCTCAGOL 295 VITRIC CID, SUGAR, GARLLC POWDER, SKMM MLK, RED AID GREEI 10 ICE EPPER POWDER D ISODIUM INOSINATE, DISODUM GUAMMATE MOOPFED ORN STARCH), CALCUMM HYDROXDE. ONTANS MLK INGREDIENTS.

"Hot or Not"

"Hot or Not"

What fraction of hot chips to not hot chips are there in a bag of Doritos Roulette?

"Hot or Not"

What fraction of hot chips to not hot chips are there in a bag of Doritos Roulette?

"Hot or Not"

What fraction of hot chips to not hot chips are there in a bag of Doritos Roulette?

1
6

"Hot or Not"

What fraction of hot chips to not hot chips are there in a bag of Doritos Roulette?

"Hot or Not"

What fraction of hot chips to not hot chips are there in a bag of Doritos Roulette?

1 "Hot" Chips
64 "Not Hot" Chips

"Hot or Not"

What fraction of hot chips to not hot chips are there in a bag of Doritos Roulette?

What fraction of hot chips to not hot chips are there in a bag of Doritos Roulette?

What fraction of hot chips to not hot chips are there in a bag of Doritos Roulette?

What fraction of hot chips to not hot chips are there in a bag of Doritos Roulette?

What fraction of hot chips to not hot chips are there in a bag of Doritos Roulette?

0 "Hot"
"Not Hot"

6 "Not Hot" Chips

Part-Part Relationship

What fraction of hot chips to not hot chips are there in a bag of Doritos Roulette?

Baking Brownies

Baking Brownies

How can 4 friends share 6 brownies fairly?

Baking Brownies

How can 4 friends share 6 brownies fairly?

Baking Brownies

How can 4 friends share 6 brownies fairly? Multiple Representations:

Baking Brownies

How can 4 friends share 6 brownies fairly?
Multiple Representations:
Partitioning Brownies into Fourths

Baking Brownies

How can 4 friends share 6 brownies fairly?
Multiple Representations:
Partitioning Brownies into Fourths

$\frac{6 \text { brownies }}{4 \text { people }}$

Baking Brownies

How can 4 friends share 6 brownies fairly? Multiple Representations:
Partitioning Brownies into Fourths

Baking Brownies

How can 4 friends share 6 brownies fairly? Multiple Representations:
Partitioning Brownies into Fourths

Baking Brownies

How can 4 friends share 6 brownies fairly? Multiple Representations: Sharing full brownies equally

Baking Brownies

How can 4 friends share 6 brownies fairly? Multiple Representations:
Sharing full brownies equally

Baking Brownies

How can 4 friends share 6 brownies fairly? Multiple Representations: Sharing full brownies equally , then partitioning the remainder.

Baking Brownies

How can 4 friends share 6 brownies fairly?
Multiple Representations:
Sharing full brownies equally
, then partitioning the remainder.

Baking Brownies

How can 4 friends share 6 brownies fairly?
Multiple Representations:
Sharing full brownies equally
, then partitioning the remainder.

Baking Brownies

How can 4 friends share 6 brownies fairly?
Multiple Representations:
Sharing full brownies equally
, then partitioning the remainder.

$$
\frac{6 \text { brownies }}{4 \text { people }}=\mathbf{1} \frac{1}{2}
$$

Baking Brownies

How can 4 friends share 6 brownies fairly?

Multiple Representations:

Sharing full brownies equally
, then partitioning the remainder.

$$
\frac{6 \text { brownies }}{4 \text { people }}=\mathbf{1} \frac{1}{2}
$$

Each person would get 1 full and 1 half piece of brownies.

Baking Brownies

How can 4 friends share 6 brownies fairly? Multiple Representations:
Partition the brownies into four equal-size portions

Baking Brownies

How can 4 friends share 6 brownies fairly? Multiple Representations:
Partition the brownies into four equal-size portions

Baking Brownies

How can 4 friends share 6 brownies fairly?
Multiple Representations:
Partition the brownies into four equal-size portions

Baking Brownies

How can 4 friends share 6 brownies fairly?
Multiple Representations:
Partition the brownies into four equal-size portions

Baking Brownies

How can 4 friends share 6 brownies fairly?
Multiple Representations:
Partition the brownies into four equal-size portions

$$
\frac{6 \text { brownies }}{4 \text { people }}=1 \frac{1}{2}
$$

Each person would get 1 full and
1 half piece of brownies.

How can 4 friends share 6 brownies fairly?
Multiple Representations:
Using a number line

$$
\frac{6 \text { brownies }}{4 \text { people }}=\mathbf{1} \frac{1}{2}
$$

Each person would get 1 full and 1 half piece of brownies.

How can 4 friends share 6 brownies fairly?
Multiple Representations:
Using a number line

$$
\frac{6 \text { brownies }}{4 \text { people }}=\mathbf{1} \frac{1}{2}
$$

Each person would get 1 full and
1 half piece of brownies.

How can 4 friends share 6 brownies fairly?
Multiple Representations:
Using a number line

Fraction as Quotient

How can 4 friends share 6 brownies fairly?
Multiple Representations:
Partition the brownies into four equal-size portions

$\frac{6 \text { brownies }}{4 \text { people }}=1 \frac{1}{2}$
Each person would get 1 full and 1 half piece of brownies.

How Many Rolos?

How Many Rolos?

There are 7 pieces in every roll of Rolo chocolate.

How Many Rolos?

There are 7 pieces in every full roll of Rolo chocolate.
Two partially eaten rolls are found in a drawer; one with 5 pieces and the other with 4 pieces. How many full rolls of Rolo are there?

How Many Rolos?

There are 7 pieces in every full roll of Rolo chocolate.
Two partially eaten rolls are found in a drawer; one with 5 pieces and the other with 4 pieces. How many full rolls of Rolo are there?

$+$

How Many Rolos?

There are 7 pieces in every full roll of Rolo chocolate.
Two partially eaten rolls are found in a drawer; one with 5 pieces and the other with 4 pieces. How many full rolls of Rolo are there?

How Many Rolos?

There are 7 pieces in every full roll of Rolo chocolate.
Two partially eaten rolls are found in a drawer; one with 5 pieces and the other with 4 pieces. How many full rolls of Rolo are there?

How Many Rolos?

There are 7 pieces in every full roll of Rolo chocolate.
Two partially eaten rolls are found in a drawer; one with 5 pieces and the other with 4 pieces. How many full rolls of Rolo are there?

5 pieces

There are 7 pieces in every full roll of Rolo chocolate.
Two partially eaten rolls are found in a drawer; one with 5 pieces and the other with 4 pieces. How many full rolls of Rolo are there?

$\begin{array}{llllllllllllllll}0 & \frac{1}{7} & \frac{2}{7} & \frac{3}{7} & \frac{4}{7} & \frac{5}{7} & \frac{6}{7} & 1 & \frac{8}{7} & \frac{9}{7} & \frac{10}{7} & \frac{11}{7} & \frac{12}{7} & \frac{13}{7} & 2\end{array}$

There are 7 pieces in every full roll of Rolo chocolate.
Two partially eaten rolls are found in a drawer; one with 5 pieces and the other with 4 pieces. How many full rolls of Rolo are there?

$\begin{array}{llllllllllllllll}0 & \frac{1}{7} & \frac{2}{7} & \frac{3}{7} & \frac{4}{7} & \frac{5}{7} & 6 & 7 & \frac{8}{7} & 9 & \frac{10}{7} & \frac{11}{7} & \frac{12}{7} & \frac{13}{7} & \frac{13}{7} & 2\end{array}$
$\frac{5 \text { pieces }}{7 \text { pieces }}+\frac{4 \text { pieces }}{7 \text { pieces }}=\frac{9 \text { pieces }}{7 \text { pieces }}$

There are 7 pieces in every full roll of Rolo chocolate.
Two partially eaten rolls are found in a drawer; one with 5 pieces and the other with 4 pieces. How many full rolls of Rolo are there?

$0 \quad \frac{1}{7} \quad \frac{2}{7} \quad \frac{3}{7} \quad \frac{4}{7} \quad \frac{5}{7} \quad \frac{6}{7} \quad 1 \quad \frac{8}{7} \quad \frac{9}{7} \quad \frac{10}{7} \quad \frac{11}{7} \quad \frac{12}{7} \quad \frac{13}{7} \quad 2$
$\frac{5 \text { pieces }}{7 \text { pieces }}+\frac{4 \text { pieces }}{7 \text { pieces }}=\frac{9 \text { pieces }}{7 \text { pieces }}$

There are 7 pieces in every full roll of Rolo chocolate.
Two partially eaten rolls are found in a drawer; one with 5 pieces and the other with 4 pieces. How many full rolls of Rolo are there?

$\begin{array}{lllllllllllllllll}0 & \frac{1}{7} & \frac{2}{7} & \frac{3}{7} & \frac{4}{7} & \frac{5}{7} & \frac{6}{7} & 1 & \frac{8}{7} & \frac{9}{7} & \frac{10}{7} & \frac{11}{7} & \frac{12}{7} & \frac{13}{7} & 2\end{array}$
$\frac{5}{7}+\frac{4}{7}=1 \frac{2}{7}$
There is one full roll of Rolos and an additional 2 pieces out of a roll of 7 .

Fractions As Operators

There are 7 pieces in every full roll of Rolo chocolate.
Two partially eaten rolls are found in a drawer; one with 5 pieces and the other with 4 pieces. How many full rolls of Rolo are there?

Fraction Constructs

Four Fraction Models

Four Fraction Models

Four Fraction Models

Linear Model

Cartons

DOUBLE CLOTHESLINE

DOUBLE CLOTHESLINE

0.2

DOUBLE CLOTHESLINE

0.2

DOUBLE CLOTHESLINE

0.2
?
\%

DOUBLE CLOTHESLINE

0.2

DOUBLE CLOTHESLINE

0.2

0%

DOUBLE CLOTHESLINE

0

0.2

0 \%

DOUBLE CLOTHESLINE

0
0.2

1

0 \%

DOUBLE CLOTHESLINE

0
0.2

1

0 \%

DOUBLE CLOTHESLINE

DOUBLE CLOTHESLINE

0
0.2

1

0 \%

DOUBLE CLOTHESLINE

0
0.2

1

DOUBLE CLOTHESLINE

0
0.2

1
$0 \% \quad 20 \%$
100 \%

DOUBLE CLOTHESLINE

0

0.2
0.4

DOUBLE CLOTHESLINE

0

0.2
0.4

DOUBLE CLOTHESLINE

0

0.2
0.4
0.6
0.8

1

0 \%
20 \%
40 \%
60 \%
80 \% . 00 \%

DOUBLE CLOTHESLINE

0
0.2
0.4
0.6
0.8

20 \%

Four Fraction Models

Four Fraction Models

Four Fraction Models

Four Fraction Models

Area Model

Four Fraction Models

Four Fraction Models

Set Model

Four Fraction Models

Volume Model

Four Fraction Models

Linear Model

Set Model
Area Model

Volume Model

0 0

Create a design where there are

- twice as many yellow pattern blocks as red ones and
- twice as many blue pattern blocks as yellow ones.
What fraction of the area is yellow?

ACTIVITY I 2.4

Display circle graphs like this one to students. Ask questions related to fractions about them. For example,

- About what fraction of the school population is in each grade? How do you know?
- What is the probability that a student chosen at random is a Grade 1 student?
- How might the graph change if about $\frac{1}{4}$ of the students were in kindergarten?

Students in K to Grade 3

Fractions Learning Pathways

Please Note:

- Mixed, improper and proper fractions should be interspersed throughout fractions teaching
and learning so that the students build flexibility with these early.
- "Models" include linear, area, volume, and set representations.

Unit Unit Fractions
 A

Use proportional reasoning to make reasonable estimates

Understanding proportional reasoning requires students to consider a number or quantity in relative terms. With fractions, students must consider the fraction in context, such as one half of a whole figure. Students use proportional reasoning to partition a whole into unit fractions.

BACKGROUND

A unit fraction is the base unit of any fraction and always has a numerator of 1 ; for example, $\frac{1}{4}, \frac{1}{5}, \frac{1}{23}$ are all unit fractions. Every

TASKS
Walk the Line
Students actively equi-partition a number line using different fractional units (e.g., halves, fifths) as they place mixed and improper fractions. Students will enjoy walking, jumping or using every day classroom items as a method of kinaesthetically nartitioning a

Walk the Line

Description

Students actively equi-partition a number line using different fractional units (e.g., halves, fifths) as they place mixed and improper fractions. Students will enjoy walking, jumping or using every day classroom items as a method of kinaesthetically partitioning a number line on the floor. This task becomes increasingly complex based upon the sets of fractions used.

Mathematics

Accurately placing fractions on a number line involves significant spatial reasoning and the use of a large number line allows students to gesture and walk to communicate their spatial reasoning. Research shows that the number line is a powerful model for representing fractions tha supports a deeper understanding of fraction as number (as opposed to a circle model). Unit amounts are purposefully scaffolded to allow students to use their knowledge of benchmark fractions (e.g., $\frac{1}{5}$) to place other fractions (e.g., $\frac{6}{5}$).

Curriculum Connections

Students will:

- understand a fraction as a number on the number line;
- represent and compare fractions;
- accurately place fractions on a number line by reasoning about their relative size.

Explore the Progression

Explore the Fraction Learning Pathway with a partner.
Where do you feel your grade level curriculum aligns with the Pathway?

Pick an Activity

Select a topic from the Pathway.

Read the topic and explore the suggested activity.

Be ready to share out your thinking to the group.

Making Sense Series

The Progression of Fractions
Meaning, Equivalence, \& Comparison
\section*{gfletchyfractions}

created by Graham Fletcher
3 @gfletchy
www.gfletchy.com

Progression of Fractions

