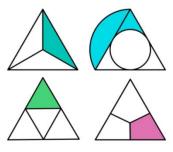
Grade 7 - TLC Thinking Framework - Fractions

Types of Questions	Selecting Tools and Strategies	Representing	Connecting	Problem Solving	Reflecting	
Grade 7 Fractions	Conceptual Thinking (need to reword the question)	Representative Thinking Hand out fraction strips, &	Conceptual Thinking Provide a situation where ¹ / ₃ is	Procedural Thinking / Conceptual Thinking	Reasoning and Proving Choose two fractions so that	R Is
	Math Before Bed Fractions	tangram tiles; let students shade	greater than 1/2?	In football, the player who kicks	when you add them, the sum is	fa
	How many red squares can you make from these partially filled squares?	each fraction a different colour, cut out and keep for personal		the ball is referred to as the punter. During a	$\frac{2}{3}$ greater than the difference when	
		tool.	Connective Thinking	recent football game, the punter,	you subtract them. What could	tl
		Big idea: benchmark fractions - $(1/2, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{10})$	What calculation do you see in this number line?	Khan Kickit, kicked the ball five times. His	the fractions be? Are these the only possibilities? How do you	F
		(1/2, /3, /4, 1/3., 1/10)	this number line.	longest kick was 44 yards and he	know whether these are the only	P V
		Representative Thinking	$\bigcirc \bigcirc $	averaged 35 yards per kick. Each	possibilities? How do you know that your strategy will always	Р Н
		TIPS4RM - Unit 7 Day 1 - building patterns with fractions		of his kicks was a different positive integer	work in an open-ended fraction	t
		BLM 7.1.1 & 7.1.2	(six jumps from 0 to 2)	length.	operation question?	e
	@MathBeforeBed			Determine the minimum possible	Reasoning and	
	Procedural Thinking	TIPS4M Unit 7 Day 4 Fractions using Relational Rods	Conceptual Thinking	length of Khan's shortest kick.	Proving/Conceptual Thinking	
	Make as many addition	using Kelational Kous	There is a test and someone got	Conceptual Thinking	Select a fraction between ¹ / ₄ or ³ / ₄	
	statements using different	Representative Thinking	$\frac{17}{28}$. Without using the standard	Fraction Squares - Mix & Match	(do not use a ½) and a decimal. Which represents more? Reflect	
	fractions to make a whole	Fraction Talks - Make your own fraction by shading a section and	algorithm, how would you use	Each diagram below is made by	on your thinking to explain how	
	*equivalent fractions to add unlike denominator fractions	add to fraction number line	your knowledge of factors, multiples, equivalent fractions,	joining corners and midpoints of	you know are right.	
			place value and benchmark	a square.		
	Practise adding fractions	Representative Thinking	numbers to show someone else	For each diagram:Work out the fraction of		
	TIPS4M Unit 7 Day 2 Adding Fractions BLM 7.2.1	You can use a grid to help you add and subtract fractions. For	what percent the person got on the test?	the square that is shaded		
		example,		 Explain how you 		R P
	Constraint Thinking			worked it out.		S
	Balancing equations with fractions			Try it on your own first, but		a
	$1 - x = \frac{1}{3}$			check that each diagram is one of		tł
		This grid has 16 squares.		the fractions at the bottom of the		6
		7 squares are shaded darkly		page		6
		represent $\frac{7}{16}$		A) B) C)		E
		6 squares are shaded lightly represent				a
		6				di
		$\overline{16}$				
		This grid shows that: $7 6 13$				
		$\frac{7}{16} + \frac{6}{16} = \frac{13}{16}$ It also shows that:				
		$\frac{13}{16} - \frac{6}{16} = \frac{7}{16}$				
		16 16 16				1
		Representative Thinking				1
		Build your own (BYO) fraction				
		shape - where #1 - at least 1/2 is Red		Conceptual Thinking You have two fractions:		
		at least 1/4 is Blue				
		no more than $1/6$ is Yellow		a/b is more than c/d. What could		
		#2 - at least 1/4 is Red at least 1/12 is Blue		the fraction be? Why did those fractions work?		
		the number of Yellow squares		Hacuons work:		
		are more than double than the		Questions extensions:		1


Communicating

Reasoning and Proving

Is the following statement true or false? $\frac{l}{2} + \frac{l}{3} = 1$ How can you justify your thinking?

Reasoning and Proving/Conceptual

Which one doesn't belong? How can you justify your thinking? How does your evidence prove your reasoning?

Reasoning and Proving/<mark>Procedural Thinking?</mark>

Solve each example. Use visuals and operations to show your thinking.

6 x 5 = _____
6 x
$$\frac{l}{5}$$
 = _____

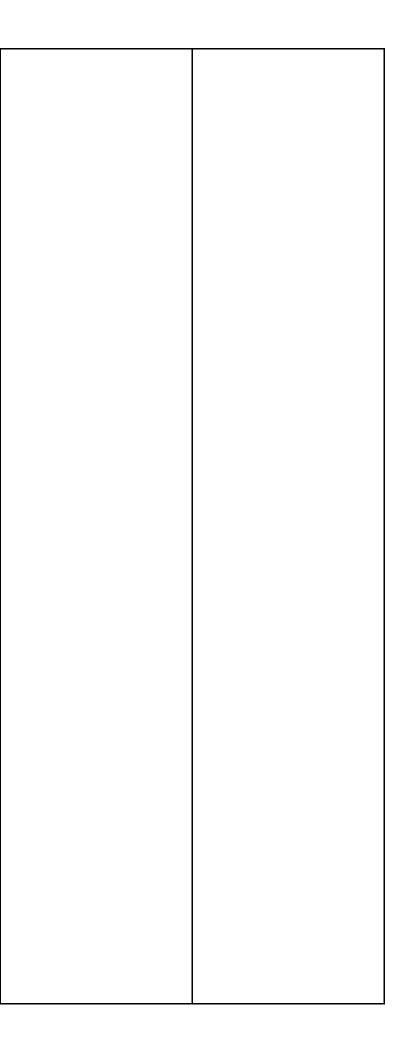
Explain how these two examples are alike and how they are different.

Reasoning and Proving

Conceptual Thinking / Communicative Thinking Fraction Talks - Square Puzzle

What fraction of the square is shaded? Justify your answer.

Extension questions


- How could you shade twice this area ?
- How many different ways can you find to shade exactly one-quarter of the shape?
- If the entire square has an area of 12 square units, what is the area of the shaded section?
- If the shaded section has an area of 6 square units, what is the area of the entire square?

Constraint Thinking/Communicative Thinking

 $\frac{l}{2}$ is greater $\frac{l}{3}$. Using the visuals below, show whether this statement is true or untrue.

Image: State of Red squares What fractions did you ty? At more Red squares What fractions did you ty? Image: Red Red State Red
Finally, on Thursday I spent my
last \$1.25 on a comic. How much pocket money did I

	Hint: It might be easier to work backward Conceptual Thinking / Procedural Thinking TIPS4M Unit 7 Day 6	
	Nelson Math Focus 7 page 67 Fraction Tic-Tac-Toe Fraction adding/subtracting game	
	TIPS4M Unit 7 Day Adding and Subtracting Fractions BLM 7.71 Fraction Flag	